Trapping of intermediates with substrate analog HBOCoA in the polymerizations catalyzed by class III polyhydroxybutyrate (PHB) synthase from Allochromatium vinosum.

نویسندگان

  • Chao Chen
  • Ruikai Cao
  • Ruben Shrestha
  • Christina Ward
  • Benjamin B Katz
  • Christopher J Fischer
  • John M Tomich
  • Ping Li
چکیده

Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of covalent and noncovalent intermediates in the polymerization reaction catalyzed by a C149S class III polyhydroxybutyrate synthase.

Polyhydroxybutyrate (PHB) synthases catalyze the conversion of 3-hydroxybutyryl coenzyme A (HBCoA) to PHB with a molecular mass of 1.5 MDa. The class III synthase from Allochromatium vinosum is a tetramer of PhaEPhaC (each 40 kDa). The polymerization involves covalent catalysis using C149 of PhaC with one PHB chain per PhaEC dimer. Two mechanisms for elongation have been proposed. The first inv...

متن کامل

Class III polyhydroxybutyrate synthase: involvement in chain termination and reinitiation.

Polyhydroxybutyrate (PHB) synthase catalyzes the polymerization of (R)-3-hydroxybutyryl-CoA (CoA = coenzyme A) into high molecular weight PHB. Recombinant wild-type (wt) class III synthase from Allochromatium vinosum (PhaCPhaE(Av)), antibodies to this synthase and to PHB, and [(14)C]hydroxybutyryl-CoA (HB-CoA) have been used to detect oligomeric hydroxybutyrate (HB) units covalently bound to th...

متن کامل

In vitro analysis of the chain termination reaction in the synthesis of poly-(R)-beta-hydroxybutyrate by the class III synthase from Allochromatium vinosum.

Allochromatium vinosum polyhydroxyalkanoate synthase catalyzes formation of poly-(R)-3-hydroxybutyrate (PHB) from (R)-3-hydroxybutyryl-coenzyme A (HB-CoA). (R)-3-Hydroxybutyryl-N-acetylcysteamine (HB-NAC) is an alternative substrate for this synthase in vitro, with a turnover 1% that of HB-CoA. With HB-NAC, the molecular weight (M(w)) of PHB produced at substrate-to-enzyme ratios of 1500-15 000...

متن کامل

Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies.

Class I and III polyhydroxyalkanoate (PHA) synthases catalyze the conversion of beta-hydroxybutyryl coenzyme A (HBCoA) to polyhydroxybutyrate. The Class I PHA synthase from Ralstonia eutropha has been purified by numerous labs with reported specific activities that vary between 1 and 160 U/mg. An N-terminal (His)6-PHA synthase was constructed and purified with specific activity of 40 U/mg. The ...

متن کامل

Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase.

Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of (R)-3-hydroxybutyryl-CoA (HB-CoA) into high molecular weight PHB, biodegradable polymers. The class III PHB synthase from Allochromatium vinosum is composed of a 1:1 mixture of two approximately 40 kDa proteins: PhaC and PhaE. Previous studies using site-directed mutagenesis and a saturated trimer of hydroxybutyryl-CoA have sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS chemical biology

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2015